

 ARL-SR-0370 ● APR 2017

 US Army Research Laboratory

OS Friendly Microprocessor Architecture

by Patrick Jungwirth and Patrick La Fratta

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-SR-0370 ● APR 2017

 US Army Research Laboratory

OS Friendly Microprocessor Architecture

by Patrick Jungwirth
Computational and Information Sciences Directorate, ARL

Patrick La Fratta
Aviation and Missile Research, Development, and Engineering Center,
Redstone Arsenal, AL

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid
OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

April 2017
2. REPORT TYPE

Special Report
3. DATES COVERED (From - To)

September 2014–August 2016
4. TITLE AND SUBTITLE

OS Friendly Microprocessor Architecture
5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Patrick Jungwirth and Patrick La Fratta
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Research Laboratory
ATTN: RDRL-CIH-S
Aberdeen Proving Ground, MD 21005-5067

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-SR-0370

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES
Patrick La Fratta is now affiliated with Micron Technology, Inc., Boise, Idaho.

14. ABSTRACT

We present an introduction to the patented Operating System Friendly Microprocessor Architecture (OSFA). The software
framework to support the hardware-level security features is currently patent pending. We are interested in information
technology and computer security professionals reviewing the hardware-level security features and information assurance
features.
Conventional microprocessors have not tried to balance hardware performance and OS performance at the same time. The
goal of the OSFA is to provide a high-performance microprocessor and OS. Computer security features are implemented in
hardware. By extending Unix file permissions bits down to each cache memory bank and memory address, the OSFA
provides hardware-level information assurance. OS-level access to memory is divided into access layers. For each software
application, a table (white list) sets limits for all OS library function calls required by the application. Each library function
call has a set of object limits. The cache bank memory pipeline architecture and permission bits provide features to balance the
complexities of hardware, software, and computer security.
15. SUBJECT TERMS

microprocessor, operating system, context switch, hardware computer security, computer security, cache bank pipeline, library
call permissions

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

56

19a. NAME OF RESPONSIBLE PERSON

Patrick Jungwirth
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)

410-278-6174
 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

Approved for public release; distribution is unlimited.
iii

Contents

List of Figures v

List of Tables vi

Preface vii

Acknowledgment viii

1. Introduction 1

1.1 OS Friendly Microprocessor Architecture Permission Bits 2

1.2 Bus Architectures 2

2. In-Band Signaling, the Open Front Door 3

3. OS Friendly Microprocessor Architecture 4

3.1 DMA/Cache Bank Controller Architecture 5

3.2 Context Switch 6

3.3 Cache Bank Architecture 8
3.3.1 OS Friendly Microprocessor Architecture Version 1 Cache

Bank 8

3.3.2 OS Friendly Microprocessor Architecture Version 2 Pipeline
State Cache Bank 10

3.4 OS Friendly Microprocessor Architecture Performance Modeling 11
3.4.1 Conventional and OS Friendly Microprocessor Architecture

Context Switch Modeling 11

3.4.2 Conventional Architecture Context Switch Modeling 13

3.4.3 OS Friendly Microprocessor Architecture Context Switch
Modeling (Version 1) 14

3.4.4 OS Friendly Microprocessor Architecture Context Switch
Modeling (Version 2) 17

4. OS Friendly Microprocessor Architecture Hardware Computer
Security 17

4.1 Cache Bank and Memory Cell Permission Bits 18

Approved for public release; distribution is unlimited.
iv

4.2 Instruction Permission Bits 18

4.3 Library Call Permissions 19

5. OS Friendly Microprocessor Architecture Access Layers 20

5.1 Instruction, Data, Register, and Pipeline State Memory Partitions 21

5.2 Permission Bits: Microkernel, Thick OS, Drivers, and Applications 21

5.3 I/O Implementation 22

5.4 Exception Handling 24

5.5 Practical Permission Bit Architecture 25

5.6 OS Friendly Microprocessor Architecture Version 2: Practical Cache
Bank Architecture 27
5.6.1 OS Friendly Microprocessor Architecture Version 1

Permission Bit Limitations 28

5.6.2 OS Friendly Microprocessor Architecture Version 2
Permission Bit Cache Bank Architecture 28

5.7 Microkernel, OS, and Application Cache Banks Organization 29

5.8 Process Level Cache Bank Operations 30

5.9 Cache Bank I/O Example 33

6. Computer Security Examples 35

6.1 Buffer Overflow 35

6.2 Data Execution Exploitation 36

6.3 “Low-Level Driver” Protection 37

6.4 Control Information Protection 40

6.5 Debugging Traps 40

6.6 Hardware Features for Hypervisor 40

6.7 Architecture Issues 41

7. Conclusion 42

8. References 43

List of Symbols, Abbreviations, and Acronyms 45

Distribution List 46

Approved for public release; distribution is unlimited.
v

List of Figures

Fig. 1 OS friendly microprocessor architecture ...1

Fig. 2 von Neumann and Harvard bus architectures ..3

Fig. 3 Computer memory types and sizes ..3

Fig. 4 OS friendly microprocessor architecture ...5

Fig. 5 OS friendly DMA controller and cache bank controller pipeline
architecture ...6

Fig. 6 OS friendly microprocessor architecture context switch timing
diagram ..7

Fig. 7 Data, instruction, and register cache controller banks9

Fig. 8 Pipeline state parallel cache controller banks10

Fig. 9 OS friendly microprocessor architecture version 2 pipeline state
cache banks ..11

Fig. 10 Conventional processor architecture model ...12

Fig. 11 OS friendly microprocessor architecture model13

Fig. 12 Cache bank and memory cell hardware information assurance...........18

Fig. 13 Library function call table information assurance19

Fig. 14 OS friendly microprocessor architecture cache bank permission
bits ..20

Fig. 15 Secure microkernel cache banks and permission bits22

Fig. 16 Thick OS cache banks and permission bits ..22

Fig. 17 Application’s permission bits ..22

Fig. 18 OS friendly microprocessor architecture I/O example23

Fig. 19 Real-world example of OS friendly microprocessor architecture’s
permission architecture ..23

Fig. 20 For the I/O port, the application software knows the register number;
however, the application cannot access the contents of the register24

Fig. 21 Permission bits and hardware exception handling25

Fig. 22 Example 4-layer architecture ...27

Fig. 23 Practical permission bit and cache bank architecture28

Fig. 24 Cache bank permission bit lookup table ..29

Fig. 25 OS friendly microprocessor architecture cache bank organization30

Fig. 26 Microkernel cache bank organization ..31

Fig. 27 OS and application cache bank organization32

Approved for public release; distribution is unlimited.
vi

Fig. 28 Application writes a cache bank block of data to USB controller34

Fig. 29 Process stack example..36

Fig. 30 Ethernet frame ..37

Fig. 31 Cache bank and Ethernet frame example ...39

Fig. 32 Real-time debugging trap example ..40

Fig. 33 OS friendly microprocessor architecture: software and hardware
hierarchy ..42

List of Tables

Table 1 Conventional architecture context switch steps14

Table 2 OS friendly microprocessor architecture version 1 context switch
steps..16

Table 3 Example OS friendly microprocessor architecture layer hierarchy20

Table 4 Some possible OS friendly microprocessor architecture access
levels ..26

Approved for public release; distribution is unlimited.
vii

Preface

The paper “OS Friendly Microprocessor Architecture: Hardware Level Computer
Security” was originally published in Proceedings of SPIE: Cyber Sensing 2016,
0277-786X, V. 9826 (2016 April 19, Baltimore, MD). This report is a longer version
of the published paper and it includes additional material, including 1) a bus
architecture introduction, 2) Operating System Friendly Microprocessor
Architecture (OSFA) Version 2 pipeline state cache bank, 3) debugging traps, and
4) architecture features for a hypervisor.

Approved for public release; distribution is unlimited.
viii

Acknowledgment

The author wishes to thank The US Army Aviation and Missile Research,
Development, and Engineering Center and the US Army Research Laboratory for
the opportunity to develop and improve the OS Friendly Microprocessor
Architecture.

Approved for public release; distribution is unlimited.
1

1. Introduction

The Operating System (OS) Friendly Microprocessor Architecture’s (OSFA’s)
goals are to provide a high-performance microprocessor and reduce the code
complexity of an operating system. We have developed a computer architecture
that reduces the high cost of a context switch and provides hardware-based
computer security. A context switch can be as fast as 1 central processing unit
(CPU) cycle.

Figure 1 introduces the OSFA.1–2 The processor memory and bus architecture is an
extended Harvard architecture. The OSFA1 uses pipeline memory controllers to
rapidly background switch cache memory pages. The pipeline memory architecture
supports hardware-based OS context switches. Context switches for lightweight
threads can be as fast as 1 CPU cycle.

OS Friendly Microprocessor Architecture Block Diagram

Data Bus

Program
Address Bus

Data
Address Bus

Read/Write

Program
 Memory

Extended
Harvard

 Processor
Architecture

Program
Bus

 Data
Memory

Data
Address Bus

Read/Write

Data
Address Bus

Read/Write

Register
Mem

Pipeline
State Mem

OS Friendly
Architecture

B
us

se
s

B
us

se
s

B
us

se
s

B
us

se
s

Microprocessor Execution Pipeline

In
st

ru
ct

io
n

Ca
ch

e
Ba

nk

M
em

or
y

Pi
pe

lin
e

Ar
ch

ite
ct

ur
e

Da
ta

 C
ac

he
 B

an
k

M
em

or
y

Pi
pe

lin
e

Ar
ch

ite
ct

ur
e

Re
gi

st
er

 C
ac

he
 B

an
k

M
em

or
y

Pi
pe

lin
e

Ar
ch

ite
ct

ur
e

Pi
pe

lin
e

St
at

e
Ca

ch
e

Ba
nk

M

em
or

y
Pi

pe
lin

e
Ar

ch
ite

ct
ur

e

Fig. 1 OS friendly microprocessor architecture

OS information assurance is implemented in hardware. By extending the traditional
Unix file permissions bits down to each memory cell, each cache line, and each
cache memory bank, the OSFA processor provides hardware-based computer
security.

Approved for public release; distribution is unlimited.
2

1.1 OS Friendly Microprocessor Architecture Permission Bits

A unique feature of the OSFA is the permission bit Index_Register_I/O
(IRegIO). IRegIO allows the OS to provide an index register pointing to an
input/output (I/O) port or I/O memory address. The IRegIO bit “locks out” the
memory address pointer (index register) from being read, written to, or modified. The
running process is prevented from accessing the contents of the register; however, the
process can use the index register (pointer) to read/write to I/O (registers, ports, or
addresses).

The hardware permission bits can be set to allow real-time software debugging.
Program debugging can use the R W M permission bits (Read = allowed, Write =
not allowed, and Modify = not allowed) to trap all writes made to a memory address
or register. This allows for hardware level debugging with zero performance
overhead at the software level until a write occurs.

Library function protection is provided by extending the principal of least privilege
to library function calls. For each software application, a table sets limits (white
list) for all OS function calls required by the application. The library function call
table sets limits for typical load, moderate load, and maximum load. Exceeding the
limits for typical load, moderate load, and/or maximum load can be set to generate
an exception or require higher than user level privileges.

Sections 2 through 5 cover the OSFA. Section 6 covers computer security,
information assurance, and permission bits.

1.2 Bus Architectures

There are 2 commonly used microprocessor bus architectures. The von Neumann
architecture consists of a unified instruction (program) and data memory. The
combined memory contains both data and instructions. Newer microprocessors
incorporate a no-execute bit in cache memory tables to prevent data from being
executed. A Harvard bus architecture has separate instruction (program) memory
and data memory. A modified Harvard architecture has internal separate caches for
instructions (program) and data with a combined (unified) external memory.
Figure 2 compares von Neumann and Harvard bus architectures. Note, the Harvard
architecture allows for parallel memory operations over the 2 busses and memories.

Approved for public release; distribution is unlimited.
3

von
Neumann

Processor
Architecture

Address Bus

Program/Data
Bus

Read/Write

Combined
Program and
Data Memory

Data Bus

Program
Address Bus

Data
Address Bus

Read/Write

 Program
MemoryHarvard

 Processor
Architecture

Program
Bus

 Data
Memory

Fig. 2 von Neumann and Harvard bus architectures

Figure 3 compares computer memory types and approximate memory sizes for
2013. Register memory is the fastest memory inside a computer. Register memory
typically is small. Level 1 (L1) and level 2 (L2) memory caching are contained on-
chip inside the microprocessor. Level 3 (L3) memory caching can be on or off chip.
Main memory is present on the main or system computer board. Hard drives and
tape backups represent mass storage memory. The memory types from register to
mass storage span a range of approximately 1011 or more.

M
em

or
y

Ty
pe

Memory Size in Bytes

Sl
ow

er
 --

 M
em

or
y

Sp
ee

d
--

Fa
st

er

On-Chip Memory
Board Level MemoryRegister (8 to 128)

 L1 Cache Size (8 k to 256k)

 L2 Cache Size (256k to 1024k)

 L3 Cache Size (512k to 8192k)

Main Memory (1 to 64 Gbytes)

Mass Storage (100 Gbytes to 10 Terabytes)

Fig. 3 Computer memory types and sizes

2. In-Band Signaling, the Open Front Door

In-band signaling is an open front door. There is no user authentication for control
information. A black hat or prankster only needs the tools to provide the in-band
control signals to the network system.

Telephone in-band signaling combines voice (data) and control information on a
telephone line. The papers by Weaver and Newell3 and Breen and Dahlbom4
provided the technical details for controlling the telephone network. In-band
signaling provides the open front door to send control information over the phone
line. Back in the 1970s, before the telephone companies switched to out-of-band

Approved for public release; distribution is unlimited.
4

signaling, a blue box generated the control tones (codes) to control the telephone
network. A “blue box”5 built by Steve Wozniak is on display at the Computer
History Museum.6 The average electronics hobbyist could easily build a blue box.
Blue box phone calls were free. It did not take long for “free” blue box phone calls
to become illegal.

The classic buffer overflow error, unfortunately all too common in modern
programming, presents an opportunity for a black hat to place control information
inside and gain control of a computer. The control information could be a line of
code to jump to a computer virus or other malware application.

Caller ID does not have any authentication. A prank caller can easily spoof Caller
ID. Caller ID uses a 1200 Hz frequency shift keying, Bell 202 modem7 to send
caller ID information. An “orange box” generates the spoofed Caller ID string8 for
the telephone network. In-band signaling is an open front door for controlling,
spoofing, and/or hacking a system.

The OSFA’s information assurance goal is to completely separate control and data
at the hardware level. The objective is to raise the difficulty level to hack a computer
system. Keep in mind that claiming a system is unhackable is like creating an
unsinkable ship. Current computer security best practices are based on a risk
analysis and cost/benefit analysis.

3. OS Friendly Microprocessor Architecture

This section describes the OSFA’s cache bank architecture. Section 5 covers the
cache bank and memory cell hardware permission bits.

The OSFA uses an extended Harvard architecture as illustrated in Fig. 4. In a
Harvard architecture (see Fig. 2), there are separate busses and memories for
instructions (programs) and data. The OSFA uses 4 separate busses and memories
for high-speed context switching and hardware-level information assurance. A
modified extended Harvard architecture has a unified external memory with
separate internal caches. A context switch only requires cache banks to be
connected and disconnected to the execution pipeline. Cache bank contents are
background copied to and from L1 caching while the execution pipeline is running
another process or thread.

Approved for public release; distribution is unlimited.
5

B
us

se
s

B
us

se
s

B
us

se
s

B
us

se
s

Microprocessor Execution Pipeline

In
st

ru
ct

io
n

Ca
ch

e
Ba

nk

M
em

or
y

Pi
pe

lin
e

Ar
ch

ite
ct

ur
e

Da
ta

 C
ac

he
 B

an
k

M
em

or
y

Pi
pe

lin
e

Ar
ch

ite
ct

ur
e

Re
gi

st
er

 C
ac

he
 B

an
k

M
em

or
y

Pi
pe

lin
e

Ar
ch

ite
ct

ur
e

Pi
pe

lin
e

St
at

e
Ca

ch
e

Ba
nk

M

em
or

y
Pi

pe
lin

e
Ar

ch
ite

ct
ur

e

Fig. 4 OS friendly microprocessor architecture

3.1 DMA/Cache Bank Controller Architecture

The OSFA in Fig. 5 consists of 4 DMA/cache controller banks (Instruction, Data,
Register, and Pipeline State), connected to a microprocessor execution pipeline.
The OSFA is a set of memory blocks (stages) in a pipeline configuration. The
DMA/cache controller banks (instruction, data, register, and pipeline state) connect
to internal level 1/level 2, and such, caching through busses. Internal caches connect
to external caches and external memories. The OSFA can also use a unified external
memory architecture similar to a modified Harvard architecture (internal separate
caches for instructions and data, and a unified external memory).

Approved for public release; distribution is unlimited.
6

Fig. 5 OS friendly DMA controller and cache bank controller pipeline architecture

The instruction, data, and register cache bank controllers are configured to only
write one block at a time from/to the processor pipeline. There is a tradeoff between
cache bank size and writing data in parallel. The DMA/cache bank controllers use
a parallel bus to copy to (L1 and L2 caches, internal/external L3 caches, and main
memory) memory. The pipeline caching structure also allows the execution
pipeline to run at full speed while hardware controllers provide background cache
to memory (L1 and L2 caches, internal/external L3 caches, and main memory) copy
operations in parallel.

In version 1 of the OSFA,1 the pipeline state controller and cache bank is fully
parallel. For instruction, data, and register DMA/cache controller banks, cache
memory size is more important than a fully parallel memory copy. Version 2 of the
OSFA 2 merges the pipeline state cache banks with the execution pipeline. A
parallel memory copy is not required in Version 2 2 since the cache banks are
already stored in the execution pipeline stages.

3.2 Context Switch

A typical process is allowed to run for milliseconds before context switching to the
next process. As long as the instruction, data, register, and pipeline state DMA
controller/cache memory banks in Fig. 5 can complete background copy operations
on the order of milliseconds, the processor does not “see” any of the background
operations. Since instruction, data, register, and pipeline state memory for L1, L2,

Idle Cache Banks
are not in use

Swapping Set
Cache Banks –

DMA Controllers

Active Cache
Banks Connected

to Execution
Pipeline

External
Cache and

Memory

External
Cache and

Memory

External
Cache and

Memory

External
Cache and

Memory

B
us

se
s

Leve1,
 Level 2
Caching

Leve1,
Level 2
Caching

Leve1,
Level 2
Caching

Leve1,
Level 2
Caching

DMA
Controller

Controller
and Cache

Banks

B
us

se
s

DMA
Controller

Controller
and Cache

Banks

B
us

se
s

DMA
Controller

 Controller
 and Cache

Banks

B
us

se
s

DMA
Controller

 Controller
and Cache

Banks
B

us
se

s
B

us
se

s
B

us
se

s
B

us
se

s

B
us

se
s

B
us

se
s

B
us

se
s

B
us

se
s

B
us

se
s

B
us

se
s

B
us

se
s

B
us

se
s

Microprocessor Pipeline

In
st

ru
ct

io
n

--
 M

em
or

y
P

ip
el

in
e

A
rc

hi
te

ct
ur

e

D
at

a
--

 M
em

or
y

P
ip

el
in

e
A

rc
hi

te
ct

ur
e

R
eg

is
te

r -
- M

em
or

y
P

ip
el

in
e

A
rc

hi
te

ct
ur

e

P
ip

el
in

e
S

ta
te

 --
 M

em
or

y
P

ip
el

in
e

A
rc

hi
te

ct
ur

e

Approved for public release; distribution is unlimited.
7

L3 caching, and external main memory can now run at a lower clock frequency,
significant power savings results without decreasing processor performance.

Figure 6 illustrates the OSFA Version 11 write (copy) and read (load) cache bank
operations for processes n – 1, n, and n + 1. OSFA Version 2 2 removes the parallel
memory copy (see Section 4.3.2). We use sequential numbers to simplify Fig. 6. In
an actual system, the process identification (PID) numbers would be arbitrary. The
load (read) and write (copy) cycles for each cache bank (instruction, data, register,
and pipeline state) are shown. This is a worst-case example showing cache writes
and loads for each context switch. Data locality would limit the number of writes
and loads resulting in more time to copy memory, allowing for more power savings.
Fully parallel memory copy operations, for the pipeline state cache bank, are shown
(OSFA Version 1). The “Bank(m)” notation refers to cache bank number (m) or a
set of bank numbers (m)’s. The instruction, data, register, and pipeline state cache
controller banks consist of cache banks in 1) active use by the execution pipeline:
instruction.act, data.act, register.act, and pipeline_state.act; 2) swapping set cache
banks (instruction.swp, data.swp, register.swp, pipeline_state.swp) in use by
instruction, data, register, and pipeline state DMA controllers as illustrated in
Figs. 5 and 6; and 3) inactive cache banks: instruction.ina, data.ina register.ina,
and pipeline_state.ina not in use by execution pipeline and not in use by DMA
controllers in Fig. 5.

Fig. 6 OS friendly microprocessor architecture context switch timing diagram

Process = n + 1Process = n - 1

Load
Caches for

PID = n

Copy
Caches for
PID = n-2

Load
Caches for
PID = n+1

Copy
Caches for
PID = n-1

Load
Caches for
PID = n+2

Copy
Caches for

PID = n

Pipeline
Exec Process n - 1

Pipeline
Exec Process n

Pipeline
Exec Process n + 1

Active
Cache Banks

Pipeline State
Cache Banks

Execution
Pipeline

Parallel Write Parallel Write Parallel Write

Active (Exec Process)
Process = n

Active
(Running Process)

 Process = n
Process = n - 1 Process = n + 1Process

Number

Context Switch Time Context Switch Time Context Switch Time

Parallel
Operations Pipeline Operations, Pipeline States, and Context Switch Timing

Swapping
Cache Banks

Pipeline Active Cache
Banks For PID = n - 1

Pipeline Active Cache
Banks For PID = n

Pipeline Active Cache
Banks For PID = n + 1

Inactive
Cache Banks Caches Idle Caches Idle Caches Idle

Parallel ReadParallel ReadParallel Read

Cache
Bank Activity

Active Caches

Swapping Set

Idle Caches

Approved for public release; distribution is unlimited.
8

At process n’s start, the active pipeline state cache bank (pipeline_state.act) is
copied in parallel (OSFA Version 1) into the execution pipeline latches. At the end
of context for process n, the pipeline state latches (OSFA Version 1) are copied in
parallel to the active pipeline state cache bank (pipeline_state.act). During context
time for process n, the inactive cache banks instruction.ina, data.ina, register.ina,
and pipeline_state.ina are idle. For process n – 1, the swapping set cache banks
instruction.swp, data.swp, register.swp, and pipeline_state.swp are copied to L1
level caching as shown in Figs. 5 and 6. The swapping set cache banks currently in
L1 cache memory, instruction, data, register, and pipeline_state, for process n + 1
are loaded into cache banks instruction.swp(n + 1), data.swp(n + 1),
register.swp(n + 1), and pipeline_state.swp(n + 1), to prepare to execute process
n + 1 during the next context time.

At end of context for process n, the active process n cache banks are set to swapping
set cache banks: instruction.swp(n) = instruction.act, data.swp(n) = data.act,
register.swp(n) = register.act, and pipeline_state.swp(n) = pipeline_state.act. After
context switching from process n to process n + 1, the swapping set cache banks
for process n + 1 are set to active: instruction.act = instruction.swp(n + 1),
data.act = data.swp(n + 1), register.act = register.swp(n + 1), pipeline_state.act =
 pipeline_state.swp(n + 1). The cache banks instruction.act, data.act, register.act,
and pipeline_state.act and now in use by execution pipeline. Figures 5 and 6
illustrate how the instruction, data, register, and pipeline_state DMA controllers
run in parallel with the execution pipeline.

3.3 Cache Bank Architecture

The instruction, data, and register cache bank controllers and cache banks only need
to write one word (n bits) at a time. Conventional microprocessors have a small
number of registers: on the order of 16–128. The OSFA envisions a much larger
number of registers. We envision instruction and data cache banks on the order of
128,000 or larger and register cache banks on the order of 1000 or larger. The
pipeline state cache bank is on the order of 128–1000. Figure 3 compares the sizes
of memories and caches for conventional architectures.

3.3.1 OS Friendly Microprocessor Architecture Version 1 Cache Bank

For OSFA Version 1, the pipeline state cache controller and cache banks need to
be able to read or write to all of the pipeline stage latches in parallel. Figure 6
illustrates, the parallel load (read) and write operations for the pipeline state cache
controller and cache banks. OSFA Version 2, in Section 4.3.2, removes the parallel
read/write required for Version 1.

Approved for public release; distribution is unlimited.
9

Figure 7 shows the cache controller and cache bank architecture for the instruction,
data, and register banks for OSFA Versions 1 and 2. The bank selection controller
provides arbitration to prevent the DMA controller and microprocessor execution
pipeline from accessing the same cache bank at the same time. This separation
allows the DMA to transfer cache memory pages to L1 caching in the background
while the microprocessor pipeline is executing instructions. The bank address
controller sets the cache bank memory addresses for the swapping set cache banks
(instruction.swp, data.swp, and register.swp) and the active cache banks
(instruction.act, data.act, register.act and pipeline_state.act). The read/write
controllers set the data direction for the swapping set cache banks and the active
cache banks.

In
st

ru
ct

io
n

--
M

em
or

y
Pi

pe
lin

e
Ar

ch
ite

ct
ur

e

D
at

a
--

M
em

or
y

Pi
pe

lin
e

Ar
ch

ite
ct

ur
e

R
eg

is
te

r -
- M

em
or

y
Pi

pe
lin

e
Ar

ch
ite

ct
ur

e

DMA
Controller

 Controller
and Cache

Banks

B
us

se
s

B
us

se
s

B
us

se
s

Cache Bank 2

Cache Bank 1

DMA Controller

Bank Selection Controller

Ba
nk

 A
dd

re
ss

 C
on

tro
lle

r

bu
s

Cache Bank (n-1)

Cache Bank 3

R
ea

d/
W

rit
e

C
on

tro
lle

r

R/W

Bu
s_

0

D
M

A_
Bu

s_
0

D
M

A_
Bu

s_
1

D
at

a

bu
s

Ba
nk

_S
el

_0

Ba
nk

_S
el

(n
-1

)

Bu
s_

1

D
at

a

Cache Bank 0

Ba
nk

_S
el

_1

Ba
nk

_S
el

_2

Bu
s_

1
Bu

s_
0

Bank_0

Bank_1

Bank_2

Bank_3

Bank_(n-1)

R/W_Bk0

R/W_Bk1

RW_Bk2

RW_Bk3

RW_Bk(n-1)

Microprocessor Pipeline

Fig. 7 Data, instruction, and register cache controller banks

Figure 8 shows the pipeline state cache controller and cache banks for OSFA
Version 1. The pipeline state cache bank controller and DMA cache bank controller
provide arbitration preventing the DMA controller and pipeline state (pipeline stage
latches) from using the same cache bank at the same time. This separation allows
the DMA to transfer a pipeline state cache memory bank to L1 caching in the
background while the microprocessor pipeline is executing instructions. At the start
of a context, as shown in Fig. 6, the active pipeline state cache bank

Approved for public release; distribution is unlimited.
10

(pipeline_state.act) is copied into the pipeline state (pipeline stage latches) in
parallel in a single CPU clock cycle. At the end of a context, the pipeline state is
copied in parallel in a single CPU clock cycle to the active pipeline state cache bank
(pipeline_state.act).

 Bank 0

 Bank (n-1)

 Bank 2

 Bank 1

Pi
pe

lin
e

Bk
 S

el
 C

on
tro

lle
r

D
M

A
Bk

 S
el

 C
on

tro
lle

r

DMA Controller

BU
S

BU
S

R
/W

Row_Sel(p-1)

Row_Sel0

Row_Sel(r-1)

Ad
dr

ss

D
at

a

C
ol

_ 0

Row_0

C
ol

_1

C
ol

_2

C
ol

_ 3

C
ol

_ (
c-

1)

Row_1

Row_2

Row_(r-1)

BU
S

BU
S

BU
S

BU
S

Pi
pe

lin
e

St
at

e
--

M
em

or
y

Pi
pe

lin
e

Ar
ch

ite
ct

ur
e DMA

Controller

 Controller
 and Cache

Banks

B
us

se
s

B
us

se
s

B
us

se
s

Row_Sel1

Row_Sel2

Row_Sel0

Row_Sel1

Row_Sel1

R/W

Note: pipeline_state.act = pipeline_state.swp banks; bank arbitration prevents DMA and
execution pipeline from writing to or reading from the same cache bank at the same time.

Fig. 8 Pipeline state parallel cache controller banks

3.3.2 OS Friendly Microprocessor Architecture Version 2 Pipeline State
Cache Bank

For the OSFA Version 2, the 8 memory latches are included in each pipeline stage
as shown in Fig. 9. For example, for process n, Latch4 is currently in use. To switch
to process n + 1, Latch4 is disconnected from the pipeline stage, and another latch,
for example Latch2, is connected. The latches used by process n may now be
background copied to L1 cache sequentially from stage 0 through stage (m – 1) (all
of the pipeline latches) during context n + 1. The Version 2 pipeline state
DMA/cache controller pipeline offers the same processor performance as Version 1
while requiring less power.

Approved for public release; distribution is unlimited.
11

Fig. 9 OS friendly microprocessor architecture version 2 pipeline state cache banks

3.4 OS Friendly Microprocessor Architecture Performance
Modeling

The OSFA1 offers new opportunities for increased performance and decreased
power consumption by providing hardware features to reduce the OSs cost for
managing resources. Sections 4.4.1–4.4.3 develop a first-order approximation of
the potential improvements in OS Friendly Microprocessor Architecture’s context
switch performance. Conventional microprocessor performance models are based
on the research from Vangal et. al.9 and Mudge.10

3.4.1 Conventional and OS Friendly Microprocessor Architecture
Context Switch Modeling

Sections 4.4.2 and 4.4.3 estimate the context switch time required for a
conventional architecture and the new OSFA. The OSFA significantly improves
the context switch time and uses less power. The high-level representations for
conventional and improved OSFA architectures are shown in Figs. 10 and 11.
These figures assume the following architectural characteristics. First, the internal
designs of the execution pipelines in the 2 architectures are the same. The model
for the OSFA execution pipeline in Fig. 11 uses the same execution pipeline as the
conventional architecture in Fig. 10. The labels inside the pipeline stages (labeled
“PS”) refer to the stages to which the following sections reference (EX: Execution
Stage, MEM: Memory Access Stage, and WB: Writeback Stage). Next, it is
assumed that the pipelines in both architectures, OSFA and conventional, operate

128D 128R 138128I
190

192A 192B
194A 194B

192C
194C

B
U

S

BU
S

BU
S

BU
S

Microprocessor Pipeline

102I 102D 102R 130

192 BU
S

194

100A

Cache Bank
Look-up Table

Register
Cache

Pipeline

Data
Cache

Pipeline

Pipeline
State
Cache

Pipeline

Instruction
Cache

Pipeline

Merge Pipeline State Cache Bank in Pipeline. Each Stage has 8 latches for
holding pipeline state information for processes 0••7. This provides for more
parallelism and simplifies the parallel load and copy for the cache banks.

Approved for public release; distribution is unlimited.
12

at a fixed voltage VP_H with clock period tS. The Register File Set (RFS), active
register cache bank (register.act), and the active pipeline state cache bank
(pipeline_state.act) normally operate at voltage VR_H with clock period tS. For
power improvements, the OSFA can dynamically scale down both the voltages and
clock rates of the inactive and swapping cache controllers and cache banks. The
voltage of inactive and swapping cache controllers and cache banks can be reduced
to some value VL, while the clock frequency (clock period) of these components
can be reduced (clock period increased) to some value, clock frequency fL, or clock
period tL.

Memory/Cache Controller

EX

MEM

WB

R
eg

is
te

r F
ile

Conventional Architecture

PS

Fig. 10 Conventional processor architecture model

Approved for public release; distribution is unlimited.
13

PS EX MEM WB
Modeled
Pipeline

External
Cache and

Memory

External
Cache and

Memory

External
Cache and

Memory

External
Cache and

Memory

B
us

se
s

Leve1,
 Level 2
Caching

Leve1,
Level 2
Caching

Leve1,
Level 2
Caching

Leve1,
Level 2
Caching

DMA
Controller

Controller
and Cache

Banks
B

us
se

s

DMA
Controller

Controller
and Cache

Banks

B
us

se
s

DMA
Controller

 Controller
 and Cache

Banks

B
us

se
s

DMA
Controller

 Controller
and Cache

Banks

B
us

se
s

B
us

se
s

B
us

se
s

B
us

se
s

B
us

se
s

B
us

se
s

B
us

se
s

B
us

se
s

B
us

se
s

B
us

se
s

B
us

se
s

B
us

se
s

In
st

ru
ct

io
n

--
 M

em
or

y
P

ip
el

in
e

A
rc

hi
te

ct
ur

e

D
at

a
--

 M
em

or
y

P
ip

el
in

e
A

rc
hi

te
ct

ur
e

R
eg

is
te

r -
- M

em
or

y
P

ip
el

in
e

A
rc

hi
te

ct
ur

e

P
ip

el
in

e
S

ta
te

 --
 M

em
or

y
P

ip
el

in
e

A
rc

hi
te

ct
ur

e

OS
Friendly

 Processor
Architecture

Fig. 11 OS friendly microprocessor architecture model

3.4.2 Conventional Architecture Context Switch Modeling

This section presents the steps taken by conventional processor architecture in
Fig. 10 to perform a context switch. Each step requires a certain period of time,
which is determined by the amount of work required by the step, the clock rate of
the components involved, and the parallelism exploited by these components. All
components of the conventional architecture operate with the short clock period ts.
The steps involved in a context switch for the conventional processor are shown in
Table 1.

Approved for public release; distribution is unlimited.
14

Table 1 Conventional architecture context switch steps

Step Description

Step 1 Flush the pipeline state out to the register file.

Step 2 Write out each register value to memory.

Step 3 Bring the OS register state back into the register file.

Step 4 Refill the pipeline with the OSs pipeline state.

Step 5 Execute the standard OS operations.

Step 6 Flush the OS pipeline state to the register file.

Step 7 Write out each register value to memory.

Step 8 Bring the register state of another process, p, back into the register file.

Step 9 Refill the pipeline with p’s state.

Assuming the conventional pipeline in Fig. 10 has s stages, step 1 will require s
clock ticks, and hence s·tS time. Step 2, writing each register file out to memory,
requires reading each register value into the EX stage, moving it into the MEM
stage, and then flushing it out to memory. There are 3 clock ticks for each register
value, but since the operations can be performed in a pipelined fashion, we
approximate this as r·tS time total for all r registers. Step 3 requires filling up the
pipeline to retrieve register values from memory, requiring s ticks, then writing
each value back to the register file in the writeback stage for a total of (s + r)·tS
time. Step 4 is filling the pipeline back up with values from the register file, but this
can be pipelined with the register file refill and hence is already accounted for.
Step 5 takes some unknown amount of time, tOS_NORMAL, that is dependent on the
OS design. Steps 6 and 7 are similar to steps 1 and 2, which again require s·tS time
and r·tS time, respectively. Step 8 is like step 3, which requires (s + r)·tS time, and
step 9 is like step 4, which is accounted for in this time. Hence, an expression that
approximates this entire process is given by Eq. 1 and simplified in Eq. 2.

𝑡𝑡𝐶𝐶𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑠𝑠𝑡𝑡𝑆𝑆 + 𝑟𝑟𝑡𝑡𝑆𝑆 + (𝑠𝑠 + 𝑟𝑟)𝑡𝑡𝑆𝑆 + 𝑡𝑡𝑂𝑂𝑆𝑆𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑠𝑠𝑡𝑡𝑆𝑆 + 𝑟𝑟𝑡𝑡𝑆𝑆 + (𝑠𝑠 + 𝑟𝑟)𝑡𝑡𝑆𝑆. (1)

𝑡𝑡𝐶𝐶𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 4𝑡𝑡𝑆𝑆(𝑟𝑟 + 𝑠𝑠) + 𝑡𝑡𝑂𝑂𝑆𝑆𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 (Conventional Architecture’s Context Switch Time) (2)

3.4.3 OS Friendly Microprocessor Architecture Context Switch Modeling
(Version 1)

Figure 6 presents a worst-case timing diagram for the OSFA Version 1 assuming
swapping set cache banks (instruction.swp, data.swp, register.swp, and
pipeline_state.swp) must be loaded and written for every context switch. Data
locality will significantly reduce the number of cache bank memory copy
operations. The model for OSFA’s execution pipeline in Fig. 11 is same as the

Approved for public release; distribution is unlimited.
15

conventional architecture described in Section 4.4.2 and Fig. 10. A more optimized
pipeline would provide higher performance.

The OSFA pipeline model also operates with clock period tS. In the determination
of the clock frequency of the OSFA’s other components, the cache banks are
divided into 3 sets: active, inactive, and swapping set. One of the register cache
banks, register.act, is active and one of the pipeline state caches, pipeline_state.act,
is active. These active cache banks are those that are in use by the OSFA pipeline
in Fig. 4 and the modeled pipeline in Fig. 11. There is then a set of the other cache
banks, instruction.bank(m)’s, data.bank(m)’s, register.bank(m)’s and
pipeline_state.bank(m)’s, that are either flushing state out to the DMA controllers
(instruction DMA, data DMA, register DMA, pipeline state DMA) or bring state
back from the DMA controllers (instruction DMA, data DMA, register DMA,
pipeline state DMA). These sets are designated as the swapping sets where

instruction.swp = set of instruction.bank(m)’s cache memory banks,

data.swp = set of data.bank(m)’s cache memory banks,

register.swp = set of register.bank(m)’s cache memory banks, and

pipeline_state.swp = set of pipeline_state.bank(m)’s cache memory
banks.

The cache banks not in use by the execution pipeline or DMA controllers are
inactive or idle.

The active components instruction.act, data.act, register.act and pipeline_state.act
operate with clock period tS, the swapping components instruction.swp, data.swp,
register.swp and pipeline_state.swp operate with the longer clock period tL , and the
inactive components instruction.ina, data.ina, register.ina and pipeline_state.ina are
idle (for static memory, clock frequency could be set to 0 Hz).

The modeled OSFA Version 1 in Fig. 11 performs the following steps in Table 2
during a context switch. The key feature of the OSFA is that parallelism takes place
at various levels to reduce execution time. In step 1, all pipeline stages flush state
to the active pipeline state cache simultaneously (see Figs. 5, 6, and 11), and hence
this requires only one tick at the high clock rate for a time of tS.

Approved for public release; distribution is unlimited.
16

Table 2 OS friendly microprocessor architecture version 1 context switch steps

Step Description

Step 1 Flush the pipeline state (pipeline stage latches) out to the active pipeline state cache.

Step 2 Switch the active cache banks to the OS state

Step 3
If necessary (if free slots in the pipeline_state cache bank and register cache bank
are needed), flush the contents of the previous process’ state cache banks for the
previous process ID (PID) as described in Figure 6 .

Step 4 Bring the OSs pipeline state back into the pipeline from the pipeline state cache.

Step 5 Execute the standard OS operations.

Step 6 Flush the pipeline state out to the active pipeline state cache pipeline_stage.act.

Step 7 If necessary, fetch the state of the next process for execution from memory into the
next process’ cache banks.

Step 8

Switch the active cache banks to the caches containing new (next) process (for
example, next PID): pipeline_state.act = pipeline_state(next PID), register.act =
register(next PID), instruction.act = instruction(next PID), and data.act =
data(next PID).

Step 9
Parallel copy the contents of the active pipeline state cache back into the pipeline
stage latches. Section 4.4.3 describes the parallel copy for pipeline state cache
controller and pipeline state cache banks.

Step 2 also takes a single tick to switch to the set of active cache banks for the next
PID: instruction.act = instruction(next PID), register.act = register(next PID),
data.act = data(next PID), and pipeline_state.act = pipeline_state (next PID).

Step 3 takes s ticks for the pipeline state cache and r ticks for the register file.
However, these steps can be completed at the same time as steps 4–6, so as long as
they are completed in at most the time for those steps, the pipeline will not see
them. It is reasonable to assume that step 3 can be completed in less time (if, for
the time being, we ignore cache misses and contention), as the pipeline state and
register file are relatively small, while the OS must generally perform several
system operations before switching back to a user-level process.

Step 4 is the reverse of step 1, so it requires only a single tick.

Step 5 still takes tOS_NORMAL as with the conventional architecture, and step 6 takes
a single tick like step 1. Step 7 is the reverse of step 3 and requires the same amount
of time. Again, these steps can be performed in parallel with those of steps 4–6.

Step 8 is the same as step 2, and step 9 is the same as step 4. Each of these takes
one tick. Hence, the total time for the OSFA context switch, 𝑡𝑡𝐶𝐶𝑆𝑆_𝑂𝑂𝑆𝑆𝑂𝑂𝑂𝑂, is found in
Eq. 3 and simplified in Eq. 4.

Approved for public release; distribution is unlimited.
17

 𝑡𝑡𝐶𝐶𝑆𝑆_𝑂𝑂𝑆𝑆𝑂𝑂𝑂𝑂 = 𝑡𝑡𝑆𝑆 + 𝑡𝑡𝑆𝑆 + 𝑡𝑡𝑆𝑆 + 𝑡𝑡𝑂𝑂𝑆𝑆_𝑁𝑁𝑂𝑂𝑁𝑁𝑁𝑁𝑂𝑂𝑁𝑁 + 𝑡𝑡𝑆𝑆 + 𝑡𝑡𝑆𝑆 + 𝑡𝑡𝑆𝑆. (3)

 𝑡𝑡𝐶𝐶𝑆𝑆_𝑂𝑂𝑆𝑆𝑂𝑂𝑂𝑂 = 6𝑡𝑡𝑆𝑆 + 𝑡𝑡𝑂𝑂𝑆𝑆_𝑁𝑁𝑂𝑂𝑁𝑁𝑁𝑁𝑂𝑂𝑁𝑁. (4)

We will ignore the tOS_NORMAL term by assuming it is the same for conventional and
OSFA. The speedup offered by the OSFA for context switching is estimated to be
𝐶𝐶𝐶𝐶_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑂𝑂𝑂𝑂 in Eq. 5. For example, for a 5-stage pipeline, s = 5, and 32
general-purpose registers, r = 32, this translates to an estimated theoretical speedup
of 25 found in Eq. 5 for OSFA. This is a significant order of magnitude speedup
improvement for the OSFA compared with the conventional processor architecture.

𝐶𝐶𝐶𝐶_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑂𝑂𝑂𝑂 ≈
4𝑠𝑠𝑡𝑡𝑆𝑆+4𝑟𝑟𝑡𝑡𝑆𝑆

6𝑡𝑡𝑆𝑆
≈ 2

3
(𝑠𝑠 + 𝑟𝑟) = 2

3
(5 + 32) = 25 For OSFA Context Switch. (5)

In Eq. 6 for a large number of registers, 𝑟𝑟 ≫ 𝑠𝑠, and for 𝑡𝑡𝑂𝑂𝑆𝑆_𝑁𝑁𝑂𝑂𝑁𝑁𝑁𝑁𝑂𝑂𝑁𝑁 ≫ 6𝑡𝑡𝑆𝑆 , with
𝑡𝑡𝑆𝑆 ≲ 1

100 MHz , the speedup is order the number of registers, 𝒪𝒪(𝑟𝑟).

𝐶𝐶𝐶𝐶_𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂𝑆𝑆𝑂𝑂𝑂𝑂 = 4𝑠𝑠𝑡𝑡𝑆𝑆+4𝑟𝑟𝑡𝑡𝑆𝑆+𝑡𝑡𝐶𝐶𝑆𝑆_𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
6𝑡𝑡𝑆𝑆+𝑡𝑡𝐶𝐶𝑆𝑆_𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

≈ 4𝑠𝑠𝑡𝑡𝑆𝑆+4𝑟𝑟𝑡𝑡𝑆𝑆+𝑡𝑡𝐶𝐶𝑆𝑆_𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑡𝑡𝐶𝐶𝑆𝑆_𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

≈ 4𝑟𝑟
𝑡𝑡𝐶𝐶𝑆𝑆_𝐶𝐶𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

≈ 𝒪𝒪(𝑟𝑟). (6)

3.4.4 OS Friendly Microprocessor Architecture Context Switch Modeling
(Version 2)

OSFA Version 2 pipeline state cache bank in Fig. 9 has the same context switch
speedup found in Eq. 5. The parallel memory copy for version 1 was replaced by a
background serial memory copy as described in Section 4.3.2. The serial memory
copy only requires a low-speed clock. Power requirements for the serial memory
copy are less than the full parallel memory copy used in version 1 described in
Section 4.4.3.

4. OS Friendly Microprocessor Architecture Hardware
Computer Security

OS information assurance for “data” (instruction cache banks, data cache banks,
register cache banks, pipeline state cache banks, and memory cells) is implemented
in hardware. By extending the traditional Unix file permissions bits11–13 down to
each memory cell, memory cache line, and cache memory bank, the OSFA provides
hardware-level information assurance. Figure 12 illustrates hardware-level
information assurance hierarchy and permission bits.1

Approved for public release; distribution is unlimited.
18

OS Permissions

Read

IRegIO

Write
Modify
JMP

Read

IRegIO

Write
Modify
JMP

Register (n bits)Cell Permission Bits

User
PermissionsLayer 0 Layer (n-1)Layer 1

Read

IRegIO

Write
Modify
JMP

Read

IRegIO

Write
Modify
JMP

Read

IRegIO

Write
Modify
JMP

Applications Software
Permissions

D
M

A
C

on
tr

ol
le

r

 C
on

tr
ol

le
r

an
d

C
ac

he

B
an

ksBussesBusses Busses

D
M

A
C

on
tr

ol
le

r

 C
on

tr
ol

le
r

an
d

C
ac

he

B
an

ksBussesBusses Busses

D
M

A
C

on
tr

ol
le

r

 C
on

tr
ol

le
r

an
d

C
ac

he

B
an

ksBussesBusses Busses

D
M

A
C

on
tr

ol
le

r

 C
on

tr
ol

le
r

an
d

C
ac

he

B
an

ksBussesBusses Busses

Pipeline State Controller

Register Controller

Data Controller

Instruction Controller In
st

ru
ct

io
n,

 D
at

a,
 R

eg
is

te
r,

or
 P

ip
el

in
e

S
ta

te

C
ac

he
 B

an
k

IRegIO

Cache Bank OS Permissions

Layer 0
Layer
(n-1)Layer 1

Read

IRegIO

Write
Modify
JMP

Read

IRegIO

Write
Modify
JMP

Read
Write

Modify
JMP

Memory
Type

Cache Bank
Permissions

C
ac

he
 B

an
k

(m
)

Memory Cell (Cache Address = 0xNNNN)

Fig. 12 Cache bank and memory cell hardware information assurance

4.1 Cache Bank and Memory Cell Permission Bits

The instruction, data, register, and pipeline state cache banks have a set of OS level
permission bits. The cache bank memory type field is used to define data types
(e.g., data space, stack space, heap space, integer, floating point). Only the OS has
permission to access and modify cache banks’ permission bits. OS level access to
cache controller banks is divided into access layers (layer_0, layer_1, layer_2, etc.).
Example permission bits are shown in Fig. 12. Each cache memory bank has
permission bits for each memory cell. Each cache bank memory cell has permission
bits for the OS layers and software (user level, and applications, etc.). The OS
permission bits are further divided in OS layers (layer_0, layer_1, etc.). Additional
permission bits can easily be added to Fig. 12.

4.2 Instruction Permission Bits

The OSFA also includes permission bits for additional OS level control over
instructions and hardware. In Fig. 12, permission bit JMP provides OS level control
of jump or branch on index register instructions. Permission bit IRegIO allows OS
to provide an index register pointing to an I/O port or I/O memory address. The
IRegIO bit locks out the index register (pointer). The running process is prevented

Approved for public release; distribution is unlimited.
19

from accessing the contents of the register/cache bank; however, the process can
use the index register (pointer) to read/write to I/O (registers, ports, or addresses).
Registers can be used to define data types using 2 registers for minimum value and
maximum value. For example, the type IOMemAddressType could be defined as
minimum = 0, and maximum = 15. If a register of type IOMemAddressType is
outside the minimum/maximum range, then the processor will generate an out-of-
range exception.

4.3 Library Call Permissions

The library function call table in Fig. 13 extends the principal of least privilege to
the library function call level. A table listing all possible library function calls a
software program may use is created. Each possible library function call is listed
with typical moderate load and maximum load lower and upper limits. More limits
could be used for finer grain control as in the example of the OpenFile(•) library
function call privilege limits. If the minimum number of open files is 0, the lower
limits for cases typical, moderate, and maximum is 0. If the typically user will only
have 5 files open at a time, the upper limit for typical is 5. Maximum load upper
limit specifies the maximum number of files that may be open at a time. Exceeding
the upper limits can be set to 1) require higher than user level privileges or to 2)
generate an exception. The digital signature provides authentication of the library
function call table and its permission settings.

CreateWindow(•,•,•)

Typical Values Moderate Load Maximum LoadAll Library Functions
are Listed.

Digital Signature

OpenFile(•,•,•)

LibraryCall01(•,•,•)

LibraryCall02(•,•,•)

LibraryCall03(•,•,•)

OpenComPort(•,•,•)

Lower Limit Upper Limit Lower Limit Upper Limit Lower Limit Upper Limit

Lower Limit Upper Limit Lower Limit Upper Limit Lower Limit Upper Limit

Lower Limit Upper Limit Lower Limit Upper Limit Lower Limit Upper Limit

Lower Limit Upper Limit Lower Limit Upper Limit Lower Limit Upper Limit

Lower Limit Upper Limit Lower Limit Upper Limit Lower Limit Upper Limit

Lower Limit Upper Limit Lower Limit Upper Limit Lower Limit Upper Limit

Lower Limit Upper Limit Lower Limit Upper Limit Lower Limit Upper Limit

Fig. 13 Library function call table information assurance

Approved for public release; distribution is unlimited.
20

5. OS Friendly Microprocessor Architecture Access Layers

Figure 12 introduces the cache bank permission bits for the OSFA. The instruction,
data, register, and pipeline state cache banks all use the same block of permission
bits. Figure 14 focuses on the cache bank permission bits. Each cache bank contains
a memory type field. The memory type field can be used to define stack space, heap
space, user memory, shared memory and the like. Each cache bank contains a list
of permission bits for the OS rings or OS layers. One possible hierarchy for the OS
Layers is found in Table 3. The secure microkernel and microkernel drivers control
all permission bits and manage I/O and memory allocation.

Instruction, Data, Register, or Pipeline State Cache Bank Permission Bits

Cache Bank
Permissions

Cache Bank (m)

Cache Bank OS Permissions

Memory Type

Layer 0

Read

IRegIO

Write
Modify
JMP

Layer 1

Read

IRegIO

Write
Modify
JMP

IRegIO

Layer (n-1)

Read
Write

Modify
JMP

Fig. 14 OS friendly microprocessor architecture cache bank permission bits

Table 3 Example OS friendly microprocessor architecture layer hierarchy

Layer Number Trust Level OS Access Level

Layer_0 Complete Secure Microkernel
Layer_1 Microkernel Drivers
Layer_2 Hypervisor
Layer_3 Thick OS
Layer_4 Dynamic Link Libraries
Layer_5 OS Drivers
Layer_6 • • •
Layer_7 Untrusted Applications Software

As illustrated in Fig. 5, all memory, and I/O is managed as direct memory access.
For example, an application writes a block of data to a hard drive. The application
executes file.create(•). The OS level file operation calls the secure
microkernel for an I/O port. The secure microkernel passes a pointer to an I/O port.
The pointer to the port address is marked R W M IRegIO (read, write, and modify

Approved for public release; distribution is unlimited.
21

are not allowed, IRegIO specifies pointer to I/O port). We will use the notation
R W M for read, write, and modify are allowed. The OS cannot read, write, or
modify the value of the pointer. The application then calls file.write(•) using
the pointer. The OS can only use the file pointer for I/O for the file.write(•)
OS library function call. Microkernel can manage (run) multiple OSs and programs
at the same time.

5.1 Instruction, Data, Register, and Pipeline State Memory
Partitions

The instruction, data, register, and pipeline state cache banks all use the same
permission bits. The memory type field in Fig. 14 restricts the information that can
be placed in the cache bank. For example, if the cache bank type is set to application
data, the running task or thread cannot use the cache bank as stack space. For a
cache bank to be used for stack space, the stack space permission bit must be set.
For a push or pull stack operation to read or write to a stack cache bank, an index
pointer must have stack permission bit set. Stack registers will also be marked as
R W M (read, write, modify are not allowed), so the running task cannot modify
the contents of the stack pointer (register).

Instructions and data have their own stack space (cache banks). For example, an
array of data is placed on the stack to call an OS library function. The return address
is not data and is placed on a separate stack contained in the instruction cache bank.
The stack spaces are not unified. The data stack does not contain any return
addresses. The instruction stack is managed by the microkernel, so the OS and
application do not have any direct access to the return address pointer. The return
address pointer can also be set to R W M (read, write, modify are not allowed).

The next section looks at permission bits for different OS access levels covered in
Table 3.

5.2 Permission Bits: Microkernel, Thick OS, Drivers, and
Applications

Figures 15–17 provide example permission bit settings. Figure 15 shows
permission bit settings for the secure microkernel, the most secure layer. The
microkernel has complete access. Microkernel drivers have read and write access.
In Fig. 16, the full feature OS and dynamic link libraries are set to access layers 3
(OS) or 4 (DLL) through n – 1. OS hardware drivers are set to read and write access
only. The application’s permission bits are shown in Fig. 17. The multiple levels of
permission bits allow for restricting the OS from writing to applications’ areas of
memory. Keep in mind that each cache bank memory can have different permission

Approved for public release; distribution is unlimited.
22

bit settings. The OS could have full control over one application’s cache memory
bank and have no control or visibility to a second application’s cache memory bank.
The large number of permission bits allows for fine grain memory access control.
We could set the permission bits to allow a trusted application to run under an
untrusted OS. The permission bits allow for hardware sandbox execution of
unknown, untrusted code. The hardware permission bits require that we at least
completely trust the secure microkernel. A formal proof of correctness or a very
high assurance level microkernel is recommended.

Layers 1 to n-1

Read

Pointer

Write
Modify
IRegIO

Read

Pointer

Write
Modify
IRegIO

Microkernel
Drivers

Layers 2 to n-1

Hypervisor

Read

Pointer

Write
Modify
IRegIO

Layers 3 to n-1

Thick OS

Read

Pointer

Write
Modify
IRegIO

Layers 4 to n-1

Dynamic Linked
Libraries

Read

Pointer

Write
Modify
IRegIO

Layers 6 to 7

Applications
Software

Layers 0 to n-1

Read

Pointer

Write
Modify
IRegIO

Secure
Microkernel

Hardware
Drivers

Read

Pointer

Write
Modify
IRegIO

Layers 5 to n-1

Fig. 15 Secure microkernel cache banks and permission bits

Layers 1 to n-1

Read

Pointer

Write
Modify
IRegIO

Read

Pointer

Write
Modify
IRegIO

Microkernel
Drivers

Layers 2 to n-1

Hypervisor

Read

Pointer

Write
Modify
IRegIO

Layers 3 to n-1

Thick OS

Read

Pointer

Write
Modify
IRegIO

Layers 4 to n-1

Dynamic Linked
Libraries

Read

Pointer

Write
Modify
IRegIO

Layers 6 to 7

Applications
Software

Layers 0 to n-1

Read

Pointer

Write
Modify
IRegIO

Secure
Microkernel

Hardware
Drivers

Read

Pointer

Write
Modify
IRegIO

Layers 5 to n-1

Fig. 16 Thick OS cache banks and permission bits

Layers 1 to n-1

Read

Pointer

Write
Modify
IRegIO

Read

Pointer

Write
Modify
IRegIO

Microkernel
Drivers

Layers 2 to n-1

Hypervisor

Read

Pointer

Write
Modify
IRegIO

Layers 3 to n-1

Thick OS

Read

Pointer

Write
Modify
IRegIO

Layers 4 to n-1

Dynamic Linked
Libraries

Read

Pointer

Write
Modify
IRegIO

Layers 6 to 7

Applications
Software

Layers 0 to n-1

Read

Pointer

Write
Modify
IRegIO

Secure
Microkernel

Hardware
Drivers

Read

Pointer

Write
Modify
IRegIO

Layers 5 to n-1

Fig. 17 Application’s permission bits

5.3 I/O Implementation

The OSFA uses cache banks and direct memory access controllers for I/O. The
cache bank architecture allows all I/O to have a uniform structure. In a high-level
programming language, we use file operations like file.open(•),
file.write(•), and file.read(•). The file function calls provide a uniform

Approved for public release; distribution is unlimited.
23

structure abstracting the low-level details away from the programmer. By using
cache banks and direct memory access for all input and output, all I/O operations
at the hardware level are the same. As illustrated in Fig. 18, a USB controller
interfaces to a direct memory access controller. This allows cache banks to be the
basic block for all input and output operations. We could replace the USB controller
with a disk drive controller or a video graphics card. The cache bank and direct
memory access controller provide a universal interface between the OSFA and
other devices.

Fig. 18 OS friendly microprocessor architecture I/O example

In Fig. 18, the software applications calls the OS library function
OS.Create.I/O_Port(•). The OS calls the microkernel function
MK.Create.I/O_Port(•) to create a pointer to a cache bank. The pointer has
permission bits set to R W M IRegIO. The OS and applications software cannot
read, write, modify, or access the contents of the index register (pointer). All the
OS and application know is that the index register, for example register 10 (R10),
contains a pointer to the I/O port. Figure 19 gives a real-world example for
comparison. The junior engineer knows the project plan is contained in the safe;
however, he does not have access to the project plan.

Junior engineer knows the project plan is in the safe;
however, he does not have access to the plan.

Junior EngineerChief Engineer

Thanks.

The CEO left the 2015-16 project
plan for you to review in the safe.

Fig. 19 Real-world example of OS friendly microprocessor architecture’s permission
architecture

Application

Port = OS.Create_I/O.Port(•)

OS

OSPort = MK.Create_I/O.Port(•)

Call

Return

Call

Return

Microkernel

MKPort = Pointer R W M RegIO

Application

OS.Write_I/O.Port(Port, Data)

Call

Return

Hardware Direct Memory AccessOS
Call

Return

Cache Bank

Pointer

Write_I/O.Port(Pointer, Data)

Cache Bank

Direct Memory
Access Controller

USB
Controller

Pointer

R W M RegIO

R W M RegIO

Permissions = R W M RegIO

USB
Cable

R W M IRegIO

 R W M IRegIO

R W M IRegIO

 R W M IRegIO

Approved for public release; distribution is unlimited.
24

The permission bits guarantee that the pointer can be trusted by the microkernel.
Here trust refers to software level. Only the microkernel has access to the actual
address for the pointer to the I/O Port. The software applications in Figs. 18 and 20
know the register number containing the I/O pointer; however, the software
applications cannot access the contents of the register (memory address contained
in the register).

Fig. 20 For the I/O port, the application software knows the register number; however, the
application cannot access the contents of the register

The application places data inside the cache bank pointed to by the pointer Port.
The application calls OS.Write.I/O_Port(•), which simply passes the pointer
to the hardware DMA controller to transmit the cache bank contents. In Fig. 18, the
direct memory access controller sends the contents of the cache bank to a USB
controller. We have several options for the lifetime of the I/O Port pointer: 1 context
time, single read/write operation, or forever for the microkernel.

In summary, the IRegIO permission bit restricts access to only the microkernel.
The permission bits allow the microkernel to trust the pointer. An application passes
the pointer to a hardware direct memory access controller to send or receive a cache
bank size block of data. If a black hat had control of a process and could guess the
address of a cache bank, he still would have to bypass the microkernel to set the
IRegIO permission bit for the cache bank. The permission bits and cache bank
architecture provide for efficient, high speed, low overhead I/O.

5.4 Exception Handling

Two example exceptions are illustrated in Fig. 21. A simple divide by zero error in
the application software raises an exception handled by the OS. If the software
application has provided an exception handler, it is called by the OS; else, the OS
terminates the running application.

Application

Port = OS.Create_I/O.Port(•)
OS.Write_I/O.Port(Port, Data)

Bits Permissions =
R W M RegIO

Bits Permissions =
R W M RegIO

Port is a Register Number. For example, Port = R10
(Register 10). Application Software knows the register
number; however, the contents of the register cannot be
accessed: read, written to, modified, etc.

Port = R10

Register R10's contents
cannot be accessed by

the application

Permission Bits=
R W M IRegIO

Approved for public release; distribution is unlimited.
25

Fig. 21 Permission bits and hardware exception handling

With the permission bits set to R W M (read, write, and modify are not allowed), if
the application software attempts to read the Array pointer’s address, a memory
access violation exception is raised. The OSFA hardware detects a memory access
violation and calls microkernel to handle the exception. The system developer
could include a microkernel driver to handle the memory exception and even allow
reading the address contained in the pointer Array. This would be considered poor
coding style, violate the security layer hierarchy and be an open door for hacking.

For example, a high-performance algorithm cannot be proved to be absolutely
numerically stable. A second moderate performance algorithm is known to be
numerically stable is also running. If the high-performance algorithm raises an
exception, the second algorithm is already running and can take over immediately.

5.5 Practical Permission Bit Architecture

Some possible OSFA access levels are shown in Table 4. The access levels are set
by cache permission bits. Access levels are specific to the OSFA. OS rings are
similar; however, OS rings already have an accepted definition and functions. If we
have a trusted application, we can give the application higher-level privileges than
an untrusted OS as illustrated in the right-hand column. The secure microkernel in
access layers 0 and 1 has exclusive access to the hardware permission bits. No other
layers can access the file permission bits.

Divide by zero
Exception

Application

DeltaX = 0;
Slope = Y1-Y2/DeltaX

OS
If Div0_Exeption Handler Registered
 Call Div0_Exeption Handler
ELSE
 End_Process

Application

Array[i] = new Object;

Printf(“Array Address =”, Array);

OS

Call

Call OS_Pointer =
 Microkernel.CreateMem();
Return OS_Pointer

Microkernel

Pointer = CreateCacheBank();
R W M RegIO

Return Return

Call

R W M RegIO

Permissions = R W M RegIO

Microkernel

EndProcess();
CleanUpMemory();

Hardware Exception:
Permission Bits prevent reading the

memory address of Array[];

Slope = (Y1-Y2)/DeltaX;

R W M

R W M
R W M

Approved for public release; distribution is unlimited.
26

Table 4 Some possible OS friendly microprocessor architecture access levels

Object OS friendly microprocessor architecture access levels
Microkernel (boot) 0 1 n/a n/a 0
Microkernel 0 0 0 0 0, 1
Microkernel drivers 1 1 1, 2 1, 2 2, 3
Hypervisor n/a 2 3, 4 3 4, 5
Thick OS 2 3 5, 6, 7 4, 5, 6, 7 7, 8, 9
OS libraries (DLLs) 2 3 7 7, 8 10, 11
OS drivers 2 4 8 8, 9 12, 13
Applications 3 5 9 10, 11 6

Trust Level Complete Untrusted

To illustrate some simple computer security examples, we limit the number of
access levels to 4. We can easily increase to 8 or more for a full-featured
architecture. The memory cost for the permission bits can be significant. For
example, with 8 access levels, 8 permission bits, and 16 bits for the memory type,
we would need an additional 96 bits for each cache block. For a 1-kiloword cache
bank, this is not significant; however, for each memory cell an additional 96 bits is
large. The OSFA Version 2 uses a 1-kiloword permission bit lookup table in a cache
bank, which only requires 10 bits. Each memory cell would require 8 bits for
layer_0, 8 bits for layer_1, and 10 bits for the cache lookup table (26 bits total),
which is much more practical. Layer_0 and layer_1 permission bits are included
for each memory cell for high-speed microkernel access. A larger cache bank is
possible; however, at some point becomes unpractical like the 96 bits per cell
described previously.

The access level for mobile code is set by a trusted certificate authority and verified
by the microkernel. Mobile code with an unverified (untrusted) certificate is
deleted.

An example, 4-layer permission bit architecture for the OSFA, is illustrated in
Fig. 22. To reduce the complexity for describing the architecture’s features, we
have limited the access layers to 4. As shown in Table 4, more access layers are
easy to define. We consider 4 layers the minimum number of access layers for the
OSFA. A practical number of access layers is around 8. Section 6 covers some
computer security examples for the example architecture described in Fig. 22.

Approved for public release; distribution is unlimited.
27

Secure Microkernel

Boot Drivers

Cache Bank Management
Bank

 • Boot
• Cache Bank Memory

Management
• Hardware Exceptions

 • Thick OS
• DLL

• OS Library Functions

Standard OS

DLL File APIs OS Srv

 Application
 Software

Bank Bank Bank

OS Services
Calls

Cache Bank,
Input/Output

Drivers

Layer 0
(Trusted)

Layers
1, 2

Layer 3
(Untrusted)

OS
Friendly

 Processor
Architecture

Hardware
Level

Hardware
Configuration,

Exception
Handling

Fig. 22 Example 4-layer architecture

5.6 OS Friendly Microprocessor Architecture Version 2:
Practical Cache Bank Architecture

An example practical cache bank and permission bit architecture is described in
Fig. 23. A possible 256-bit cache bank header with 5 defined fields is shown. A
larger, more complex cache bank header would be easy to define. A memory type
field describes the type of memory contained in the cache bank. The PID field
describes the “owner” of the cache bank. A microkernel field is defined for
additional microkernel control over the cache bank. The undefined field may
contain additional microkernel settings, or the OS may call the microkernel to
include OS-related cache bank information in the undefined field. Each cache bank
contains 256 bits (cache bank header), 64 bits per memory cell, and 32 permission
bits per memory cell. For a 1-kiloword (8-KB) memory cache bank, 12 KB of
memory are required. For a 4-kiloword (32-KB) cache bank, 48 KB of memory are
required. For the example processor, we use 1 kiloword (8 KB) for the cache size.
A good compromise for an actual microprocessor would be around 8–64 kilowords.

Approved for public release; distribution is unlimited.
28

Instruction, Data, Register, or Pipeline State Cache Bank Permission Bits

Cache Bank
Permissions

256 bits

Cache Bank (m)

Cache Bank OS Permissions

Memory Type (16 bits)

Layer 0

8 bits

Layer 1 Layer 7

8 bits 8 bits

64 bits Total

Process ID (16 bits)

Microkernel Field (32 bits)

Undefined (128 bits)

256 Permission Bits per Cache Bank

One Memory
Cell (Word)

Wordsize = 64 bits 32 bits
Memory Cell Size Permission Bits

Layer 0
Layer 1

8 bits + 6 bits
8 bits

Layers
2-7

10 bits
Look up table

Fig. 23 Practical permission bit and cache bank architecture

5.6.1 OS Friendly Microprocessor Architecture Version 1 Permission Bit
Limitations

The memory required for OSFA Version 1 permission bits is large. Most processes
(tasks) will only require a few different permission bit settings. For the OSFA
Version 2, we implement a cache bank lookup table with 10–16 address bits. This
provides a lookup table with 1024–65,536 entries. With a 10-bit lookup table, we
can get by with only 32 bits per memory cell to hold the permission bits. Without
the lookup table, 64–96 bits per memory cell or more would be required.

5.6.2 OS Friendly Microprocessor Architecture Version 2 Permission Bit
Cache Bank Architecture

Figure 24 shows the OSFA Version 2 permission bit cache bank look up table. A
10-bit lookup table provides for 1024 different permission bit settings. Version 1
without the lookup table would require 64–96 bits per memory cell. A 16-bit
permission bit cache bank lookup table would provide for 64k of unique permission
bit settings. As illustrated in Fig. 23, a 64k cache bank lookup table would only
require 38 bits per memory cell for the cache bank permission bits.

Approved for public release; distribution is unlimited.
29

Fig. 24 Cache bank permission bit lookup table

5.7 Microkernel, OS, and Application Cache Banks Organization

The OSFA cache bank organization, for the 4-layer model introduced in Figs. 22
and 23, is described in Fig. 25. There are 3 groups of cache banks: microkernel
(layer 0), OS (layers 1 and 2), and application software (layer 3). The microkernel
controls and configures all cache bank permission bits. The microkernel has full
access to the OSFA’s permission bits and it is completely trusted. At the hardware
level, all cache banks are the same. Only the instructions in the instruction cache
banks are executed. The data, register, and pipeline state cache banks are not
connected to the instruction decode block in the execution pipeline and cannot be
executed.

128D 128R 138128I
190

192A 192B
194A 194B

192C
194C

B
U

S

BU
S

BU
S

BU
S

Microprocessor Pipeline

102I 102D 102R 130

192 BU
S

194

100A

For example, with 8 access levels,
and 8 permission bits, and 16 bits
for the memory type, we would
need an additional 96 bits for each
cache block. For a 1k word cache
bank, this is not significant;
however, for each memory cell an
additional 96 bits is large.

A 1k word permission bit cache
bank look-up table would only
require 10 bits. Each memory cell
would require 8 bits for layer_0, 8
bits for layer_1, and 10 bits for the
cache look-up table (26 bits total)
which would be much more
practical. Cache Bank

Look-up Table

Register
Cache

Pipeline

Data
Cache

Pipeline

Pipeline
State
Cache

Pipeline

Instruction
Cache

Pipeline

Microprocessor Execution Pipeline

Approved for public release; distribution is unlimited.
30

In
st

ru
ct

io
n

Ca
ch

e
Ba

nk
s

Da
ta

Ca

ch
e

Ba
nk

s

Re
gi

st
er

Ca

ch
e

Ba
nk

s

Pi
pe

lin
e

St
at

e
Ca

ch
e

Ba
nk

s

M
ic

ro
ke

rn
el

(la
ye

r 0
)

O
S

(la
ye

rs
 1

, 2
)

A
pp

lic
at

io
n

(la
ye

r 3
)

Fig. 25 OS friendly microprocessor architecture cache bank organization

5.8 Process Level Cache Bank Operations

Figure 26 presents a simplified example of microkernel cache banks and cache bank
contents. Figure 26 does not present the details for a complete microkernel. The 4
cache bank pipelines, instruction, data, register, and pipeline state, are completely
separated. The contents from one cache bank type cannot be copied to another
cache bank type. For example, data placed on the data stack cannot be accessed by
the instruction cache bank pipeline. Two threads, thread_0 and thread_1, are
contained in the instruction cache bank set. Only the instruction cache bank pipeline
connects to the OSFA’s instruction decode stage in execution pipeline. A third
cache bank is used as a return function call stack for the microkernel.

Approved for public release; distribution is unlimited.
31

Microkernel
(layer 0)

Pipeline State
Cache Banks

Pi
pe

lin
e

Th
re

ad
_0

Pi
pe

lin
e

Th
re

ad
_1

Pi
pe

lin
e

Th
re

ad
_2

Register
Cache Banks

R
eg

 C
ac

he
Tr

ea
d_

0
R

eg
 C

ac
he

Tr
ea

d_
1

Data
Cache Banks

D
at

a
Th

re
ad

_0
D

at
a

St
ac

k
Th

re
ad

_0
D

at
a

Th
re

ad
_1

D
at

a
St

ac
k

Th
re

ad
_1

Instruction
Cache Banks

Th
re

ad
_0

R
et

ur
n

C
al

l
St

ac
k

Th
re

ad
_1

Fig. 26 Microkernel cache bank organization

Data cache banks contain data in use by thread_0 and thread_1. Each thread may
be assigned its own stack space in the set of data cache banks. The separation of
thread stack areas also enforces isolation between threads. Each thread, thread_0
and thread_1, has its own set of registers in the set of register cache banks. The
pipeline state cache banks contain the latch states from the microprocessor’s
execution pipeline in Fig. 5. The pipeline state cache banks allow for very rapid
context switching. Section 4.2 and Fig. 6 describe cache banks and context
switches. Context switches for threads can be as fast as 1 CPU cycle using the
OSFA.1

The instruction, data, register, and pipeline state cache banks in Fig. 27 for the OS
and applications software have the same hierarchy as the microkernel. The
microkernel configures all cache banks and permission settings. The OS and
applications software are “clients” to the microkernel. The microkernel manages
all permission bit settings, hardware exceptions, I/O, memory management, and
DMA settings for the OSFA. The cache bank architecture provides high-speed
context switches, and very efficient I/O.

Approved for public release; distribution is unlim
ited.

32

OS
(layers 1 and 2)

Pipeline State
Cache Banks

Pi
pe

lin
e

Th
re

ad
_0

Pi
pe

lin
e

Th
re

ad
_1

Pi
pe

lin
e

Th
re

ad
_2

Register
Cache Banks

R
eg

 C
ac

he
Tr

ea
d_

0
R

eg
 C

ac
he

Tr
ea

d_
1

Data
Cache Banks

O
S

D
at

a
Th

re
ad

_0
D

at
a

St
ac

k
Th

re
ad

_0
O

S
D

at
a

Th
re

ad
_1

D
at

a
St

ac
k

Th
re

ad
_1

Instruction
Cache Banks

O
S

Th
re

ad
_0

R
et

ur
n

C
al

l
St

ac
k

O
S

Th
ea

d_
1

Application
(layer 3)

Pipeline State
Cache Banks

Pi
pe

lin
e

Ap
pl

ic
at

io
n

Register
Cache Banks

Ap
pl

ic
at

io
n

R
eg

 C
ac

he

Data
Cache Banks

D
at

a
Ba

nk
Ap

p_
0

D
at

a
Ba

nk
Ap

p_
1

D
at

a
Ba

nk
Ap

p_
2

D
at

a
Ba

nk
Ap

p_
3

Instruction
Cache Banks

Ap
pl

ic
at

io
n

Ba
nk

_0
R

et
ur

n
C

al
l

St
ac

k
Ap

pl
ic

at
io

n
Ba

nk
_1

O
S

Th
ea

d_
2

Ap
pl

ic
at

io
n

Ba
nk

_2

Assume App
is single treaded

Fig. 27 OS and application cache bank organization

Approved for public release; distribution is unlimited.
33

5.9 Cache Bank I/O Example

We present an example in Fig. 28 showing the interaction between microkernel,
OS, and applications software for the USB I/O example discussed in Fig. 18. We
follow the cache bank organization and discussion found in Sections 5.7 and 5.8.
The software application in Application Bank_0 is executing the machine code
equivalent of the high-level instruction Port = OS.Create_I/O.Port(●). The
OS transfers the call to the microkernel by OSPort = MK.Create_I/O.Port(●).
The microkernel creates a pointer to a data cache bank. The application program
has permission to write data into the cache bank; however, it cannot access the
contents of the pointer (register). The pointer (register) contains the memory
address of the cache bank.

Once the data have been placed in the I/O bank for App_0, the application calls the
OS. The OS calls the microkernel, which simply enables a direct memory access
controller starting at the address found in the pointer Port.

Approved for public release; distribution is unlim
ited.

34

Application

Port = OS.Create_I/O.Port(•)

OS

OSPort = MK.Create_I/O.Port(•)

Call

Return

Call

Return

Microkernel

MKPort = Pointer R W M RegIO

Cache Bank

Pointer

R W M RegIO

Permissions =
R W M RegIO

Ap
pl

ic
at

io
n

Ba
nk

_0 Application is running in
instruction cache bank:

Application Bank_0

O
S

Th
ea

d_
1

OS Thread_1 manages
I/O port create calls

Th
re

ad
_0 Microkernel Thread_0 sets

up pointer and permission
bits for I/O Cache Bank

I/O
 B

an
k

Ap
p_

0
Port

Application can read/write
data to I/O cache bank

USB Cable

I/O
 B

an
k

Ap
p_

0

Pointer

R W M RegIO
USB

Controller
Direct Memory

Access Controller

Application

OS.Write_I/O.Port(Port, Data)

Call
Hardware Direct Memory AccessOS

Call

Return

Write_I/O.Port(Pointer, Data)

Permissions = R W M RegIO

Ap
pl

ic
at

io
n

Ba
nk

_0 Application is running in
instruction cache bank:

Application Bank_0

O
S

Th
ea

d_
1 OS Thread_1 calls

microkernel for write
cache bank operation Th

re
ad

_0 Microkernel Thread_0
starts DMA transfer at

address pointed to by Port

Return

Fig. 28 Application writes a cache bank block of data to USB controller

Approved for public release; distribution is unlimited.
35

6. Computer Security Examples

To improve system performance, the OSFA implements context switching, cache
memory management, and resource permission bits in hardware. This architecture
requires a secure boot to properly set up the permission hierarchy.

The goal is to have each task run in its own hardware “sandbox”. All access points
to control operations are managed by the hardware permission bits. All tasks are
running in an environment without any software level access to a control or
management level resources. In the 1970s blue box terms, we are hopefully
blocking all paths to an in-band signaling channel.

6.1 Buffer Overflow

Buffer overflow attacks are described in Cowan et al.14 In telephone in-band
signaling,3–4 a blue box5–6 was the tool needed to control the telephone network.
Back in the 1970s, there was no authentication to prevent a prankster from using a
blue box. In a buffer overflow attack, the attacker follows a set of steps avoiding
any authentication to reach the goal of administrator privileges. A buffer overflow
attack is in the same class as in-band signaling—an open door.

All of these methods seek to alter the program’s control flow so that the program will
jump to the attack code. The basic method is to overflow a buffer that has weak or
non-existent bounds checking on its input with a goal of corrupting the state of an
adjacent part of the program’s state, e.g. adjacent pointers, etc. By overflowing the
buffer, the attacker can overwrite the adjacent program state with a near-arbitrary[15]
sequence of bytes, resulting in an arbitrary bypass of C’s type system[16] and the victim
program’s logic.14

In Fig. 29, a running process executes the machine code equivalent of
printf(“ABCDEFGHIJKLMNO”);. The string is placed on the stack and the OS function
printf() is called. The return address is placed on an instruction stack. The
executing process can only place data on the “data stack”. The process does not
have any access to the instruction stack. The return address is not contained on the
“data stack”. Overwriting the data stack cannot modify the return pointer on the
instruction stack. The OS library call will need to check the length of the string. If
the stack was overwritten, the printf() call would continue printing characters
until a null string character was found or when the printf() library function call
tries to access memory out-of-bounds, a memory access violation error would
occur. The process does not have access to the return address and cannot
maliciously modify the return address.

Approved for public release; distribution is unlimited.
36

0x41424344
0x45464748
0x494A4B4C
0x4D4E4F00

0x123456

Data Stack Instruction Stack

Process and OS Cannot
Access Instruction Stack

ABCD
EFGH
IJKL

MNO-Pointer
Pointer Return Address

Process and OS
have access to stack

Printf(“ABCDEFGHIJKLMNO”);
// Place “ABCDEFGHIJKLMNO” On stack and Call OS Function //

Fig. 29 Process stack example

6.2 Data Execution Exploitation

The OSFA maintains a strong separation between instructions and data. The OSFA
(Fig. 5) cache bank memory pipelines (instruction, data, register, and
pipeline_state) are not unified. The pipelines are completely separated at the
hardware level. The cache bank permission bits (Fig. 12) maintain separation of
access layers and permission bits as described in Section 5.2. A practical cache
bank permission bit structure is described in Fig. 23. A process level description of
permission bits is presented in Section 5.8. Figures 26 and 27 show the strong
separation of access layers, cache banks, and processes.

Assume a running malware application has created a data block containing the
machine code for a computer virus. To take control of the computer, the malware
needs to find an open door to a microkernel level resource and attack the
vulnerability. Assume the application, Application Bank_0, running in Fig. 27 is
malware. The malware does not have any access to its running code in the
instruction cache bank pipeline. The malware could create an executable virus in
data memory. Assume Data Bank App_0 contains the machine code instructions for
malware. The following paragraphs describe the actions malware would need to
take to attack the architecture.

• The malware would need to move, copy, or transfer the data cache bank into
an instruction cache bank. Second, the malware would need to access the
cache bank permission bits and set the “data” type to executable. The
microprocessor architecture shown in Figs. 1 and 5 does not have any
logical connection between data and instruction cache bank memory
pipelines.

• The malware could place the computer virus in Application Bank_2 cache
bank. The cache bank permission settings set the access level for the

Approved for public release; distribution is unlimited.
37

malware “application” to level 3 (untrusted). The hardware will not allow
an access level 3 application to modify a cache bank, or I/O port. Attempting
to write to a privileged resource would instantly raise a hardware memory
access violation. As illustrated in Fig. 28, the malware could call the OS
and request an I/O port. The port address is contained in a register (for
example R10). R10 has access permission bits set to R W M IRegIO. As
illustrated in Fig. 21, any attempt to read the address contained in Register
R10 results in a hardware-level exception.

The architecture’s permission bits, cache bank memory type, and cache bank
permission bits enforce a strong separation between access levels. The conventional
von Neumann computer architectures present numerous opportunities for malware
to take control of what should be a trusted resource. Avoid allowing the malware
any in-band signaling channels to exploit an attack.

6.3 “Low-Level Driver” Protection

We present a low-level driver example for an Ethernet interface. This example
follows the USB and open port example found in Fig. 28. A high-level description
of an Ethernet frame17 is found in Fig. 30. The Ethernet frame has a maximum
length of about 1518 bytes. One Ethernet frame would fit in an OSFA 512-word
(2 KB) cache bank.

“Source”
Computer

Destination MAC
Address

Source MAC
Address Ethernet Type Packet Message

6 bytes 6 bytes 2 Bytes 46 to 1500 Bytes in Length

Packet

“Destination”
Computer

Ethernet Frame

Destination MAC
Address

Source MAC
Address Ethernet Type Packet Message

Ethernet Frame

Packet

Fig. 30 Ethernet frame

Figure 31 illustrates an OSFA cache bank configured to hold an Ethernet packet.
The application software calls the OS, which calls the microkernel to create a
pointer to a cache bank. The application then calls OS and microkernel to configure
the cache bank memory type as Ethernet. The application calls to set the source and
destination MAC addresses; the microkernel then checks to see if the MAC
addresses are valid. The source and destination MAC addresses are stored in the
cache bank as R W M (not allowed by the application and OS). The source and

Approved for public release; distribution is unlimited.
38

destination addresses are trusted because the permission bits block access to the
application and OS. The microkernel checks the packet length and then configures
the DMA controller to transfer the packet to the Ethernet controller. The cache bank
architecture and permission bits provide a general interface for all I/O operations
for the OSFA.

Approved for public release; distribution is unlim
ited.

39

Call
Application

Port = OS.Create_I/O.Port(•)

OS

OSPort = MK.Create_I/O.Port(•)

Call

Return
Return

Microkernel

MKPort = Pointer R W M RegIO

Cache Bank

Pointer

R W M RegIO

Permissions =
R W M RegIO

Port

Ethernet
Controller

Direct Memory
Access Controller

Application

OS.Ethernet.Port(Port, Data)

Call

Check Packet Message Length.
Hardware Direct Memory Access
Ethernet Controller sends packet

OS
Call

Return

Write_I/O.Port(Pointer, Data)

Permissions = R W M RegIO

Return

Pointer R W M RegIO

Application

OS.EthernetSource(•)
OS.EthernetDestination(•)

OS
Call

Return

Call

Return

Microkernel

Configure Ethernet
Source and Destination MACs

MK.EthernetSource(•)
MK.EthernetDestination(•)

Cache Bank (Memory = 2 kbytes)

Destination
MAC Address

Source
MAC Address

Ethernet
Type Packet Message

6 bytes 6 bytes 2 Bytes 1500 Bytes max

Cache Bank (Memory = 2 kbytes)

Destination
MAC Address

Source
MAC Address

Ethernet
Type Packet Message

6 bytes 6 bytes 2 Bytes 1500 Bytes max

Microkernel

Fig. 31 Cache bank and Ethernet frame example

R W M RegIO

R W M RegIO

OSFA Cache Bank
see Figure 24.

Approved for public release; distribution is unlimited.
40

6.4 Control Information Protection

Computer security examples in Section 6 describe how control information is
isolated from OS and application software access levels. All system resources are
managed by the microkernel. The microkernel can give the OS access to system
resources like memory; however, the OS is limited to only the resources isolated
from the microkernel. If an application is trusted more than the OS, the microkernel
could be configured to isolated the trusted application from an untrusted OS.

6.5 Debugging Traps

Program debugging at the register level can use the R W M permission bits (Read
= allowed, Write = not allowed, and Modify = not allowed) to trap all writes made
to a memory address or register (Fig. 32). This allows for hardware-level debugging
with no performance overhead at the software level until a write occurs.

Fig. 32 Real-time debugging trap example

6.6 Hardware Features for Hypervisor

Recent research work has suggested that a fully hardware level (level 0) hypervisor
might be possible. A Lynx Technologies white paper 18 states that a level 0, chip
level hypervisor would not require OS support. All required OS features are
implemented at the hardware level. The goal of creating a type 0 hypervisor may
not be possible.18–20

R01

R02

R03

R04

R W M •••

R W M •••

R W M •••

R W M •••

R(n-1) R W M •••

When a write occurs to Register
R4, a hardware exception is raised.

This illustrates how the permission
bits provide for real-time hardware
level debugging.

Register Permission Bits

Approved for public release; distribution is unlimited.
41

The OSFA offers features that would help develop a future level 0 hypervisor. The
cache bank and permission bit hierarchy offers hardware-level features needed to
create a sublevel 1 hypervisor. For interrupt driven threads, zero overhead context
switching is possible with the current OSFA architecture. More hardware features
are required to come closer to a level 0 hypervisor.

6.7 Architecture Issues

Proprietary OS uses digitally signed drivers to reduce the chances of malware
having easy access to protected OS resources. The OSFA has more complex
requirements for digitally signed files. There are computer security trade-offs
between a unified external memory (combining instructions, register, data, and
pipeline state cache banks) and separate internal cache memories. The same issues
are present with unified external mass storage and separate mass storage for the 4
memory pipelines. Figure 33 presents an OSFA system based on Figs. 22–32.

Approved for public release; distribution is unlimited.
42

Microprocessor Execution Pipeline

External
Cache and

Memory

Leve1,
 Level 2
Caching

DMA
Controller

Cache Bank
Controller

Cache
Banks

External
Cache and

Memory

Leve1,
 Level 2
Caching

DMA
Controller

Cache Bank
Controller

Cache
Banks

External
Cache and

Memory

Leve1,
 Level 2
Caching

DMA
Controller

Cache Bank
Controller

Cache
Banks

External
Cache and

Memory

Leve1,
 Level 2
Caching

DMA
Controller

Cache Bank
Controller

Cache
Banks

Secure Microkernel

Boot Drivers

Cache Bank Management

Layer 0
(Trusted)

Certificate
Management

Standard OS

DLL File APIs OS Srv

Drivers

Layers
1, 2

 Application
 Software

Layer 3
(Untrusted)

B
us

se
s

B
us

se
s

B
us

se
s

B
us

se
s

B
us

se
s

B
us

se
s

B
us

se
s

B
us

se
s

B
us

se
s

B
us

se
s

B
us

se
s

B
us

se
s

B
us

se
s

B
us

se
s

B
us

se
s

B
us

se
s

Cache
Banks

Cache
Banks

Cache
Banks

Cache
Banks

Cache
Banks

Cache
Banks

Cache
Banks

Cache
Banks

Cache Bank
Hierarchy

Fig. 33 OS friendly microprocessor architecture: software and hardware hierarchy

7. Conclusion

We have presented an introduction to the hardware and software hierarchy for the
OSFA and described hardware-level computer security features. The cache bank
memory pipeline architecture and permission bits provide features to balance the
complexities of hardware, software, and computer security.

Approved for public release; distribution is unlimited.
43

8. References

1. Jungwirth P, La Fratta P, inventors; US Army is assignee. OS Friendly
Microprocessor Architecture. United States Patent 9122610. 2015 Sep.

2. Jungwirth P, inventor; US Army is assignee. OS Friendly Microprocessor
Architecture: Hardware Level Computer Security. US Provisional Patent
Application. 2016 Apr.

3. Weaver A, Newell N. In-band single frequency signaling. Bell System
Technical Journal. November 1954;33(6):1309–1330. https://archive.org
/details/bstj33-6-1309.

4. Breen C, Dahlbom C. Signaling systems for control of telephone switching.
Bell System Technical Journal. November 1960;39(6):1381–1444.
https://archive.org/details/bstj39-6-1381.

5. Wikipedia: Blue box. [place unknown]: Wikipedia [updated 2016 Sep 2;
accessed 2014 June]. http://en.wikipedia.org/wiki/Blue_box.

6. Computer History Museum. Artifact details: Wozniak’s blue box. Mountain
View (CA): Computer History Museum [updated 2017; accessed 2014 Dec].
http://www.computerhistory.org/collections/catalog/102713487.

7. Wikipedia: Caller ID spoofing. [place unknown]: Wikipedia [updated 2016
Nov 13; accessed 2014 Dec]. http://en.wikipedia.org/wiki/Caller_ID_spoofing.

8. FCC: Caller ID spoofing. Washington (DC): Federal Communications
Commission [accessed 2014 Dec 29]. http://www.fcc.gov/guides/caller-id-
and-spoofing.

9. Vangal S, Anders MA, Borkar N, Seligman E, Govindarajulu V, Erraguntla V,
Wilson H, Pangal A, Veeramachaneni V, Tschanz JW et al. 5-GHz 32-bit
integer execution core in 130-nm dual-VT CMOS. Solid-State Circuits. Nov.
2002;37(11):1421–1432.

10. Mudge T. Power: a first-class design arch constraint. Computer. Apr.
2001;34(4):52–8.

11. Fillpot M. Understanding Linux file permissions. San Francisco (CA):
Linux.com; 2010 May 18 [accessed 2014 Dec 8]. http://www.linux.com/learn
/tutorials/309527-understanding-linux-file-permissions.

12. Bacon J. Getting to grips with Linux permissions: do it with permission. Linux
Magazine. 2000 Oct; 1:72–74. http://www.linux-magazine.com/Issues/2010
/120/Beginners-File-Control.

https://archive.org/
http://en.wikipedia.org/wiki/Caller_ID_spoof
http://www.linux.com/learn
http://www.linux-magazine.com/Issues/2010

Approved for public release; distribution is unlimited.
44

13. Wikipedia: File system permissions. [place unknown]: Wikipedia [2017
Jan 31; accessed 2014 Feb]

 https://en.wikipedia.org/wiki/File_system_permissions.

14. Cowan C, Wagle P, Pu C, Beattie S, Walpole J. Buffer overflows: attacks and
defenses for the vulnerability of the decade. SANS 2000 (System
Administration, Networking, and Security) Conference; 2000 Mar 21–28;
Orlando, FL. p. 1–11.

 http://www.cs.utexas.edu/~shmat/courses/cs380s_fall09/cowan.pdf.

15. lsap.org. Linux Security Audit Project. c2017 [accessed 2017 Mar 24]
http://lsap.org/.

16. Arcangeli A. xterm exploit. Bugtraq mailinglist. 1998 May 8. http://geek-
girl.com/bugtraq/, .

17. Morgan D. Ethernet basics. Dallas (TX): Southern Methodist University; 2009
[accessed 2017 Mar 28]. http://homepage.smc.edu/morgan_david/linux/n-
protocol-09-ethernet.pdf.

18. Lynx Software Technologies. The rise of the type zero hypervisor. San Jose
(CA): Lynx Software Technologies; 2012 July 18 [accessed 2017 Mar 28].
http://www.lynx.com/the-rise-of-the-type-zero-hypervisor.

19. Wikipedia: Hypervisor. [place unknown]: Wikipedia [2017 Feb 6; accessed
January 2015]. http://en.wikipedia.org/wiki/Hypervisor.

20. Beaver S, Haletky E. Type 0 hypervisor - fact or fiction. Austin (TX): The
Virtualization Practice; [accessed 2012 July 26]. http://www.virtualization
practice.com/type-0-hypervisor-fact-or-fiction-17159/.

https://en.wikipedia.org/wiki/File_system
http://www.cs.utexas.edu/%7Eshmat/courses/cs380s_fall09/cowan.pdf
http://www.virtualizationpractice.com/type-0-hypervisor-fact-or-fiction-17159/
http://www.virtualizationpractice.com/type-0-hypervisor-fact-or-fiction-17159/

Approved for public release; distribution is unlimited.
45

List of Symbols, Abbreviations, and Acronyms

ARL US Army Research Laboratory

CPU central processing unit

I/O input/output

ID identification

IRegIO Index_Register_I/O

OS operating system

OSFA Operating System Friendly Microprocessor Architecture

PID process identification

RFS Register File Set

USB Universal Serial Bus

Approved for public release; distribution is unlimited.
46

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 2 DIRECTOR
 (PDF) US ARMY RESEARCH LAB
 RDRL CIO L
 IMAL HRA MAIL & RECORDS
 MGMT

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 1 DIR USARL
 (PDF) RDRL CIH S
 P JUNGWIRTH

	List of Figures
	List of Tables
	Preface
	Acknowledgment
	1. Introduction
	1.1 OS Friendly Microprocessor Architecture Permission Bits
	1.2 Bus Architectures

	2. In-Band Signaling, the Open Front Door
	3. OS Friendly Microprocessor Architecture
	3.1 DMA/Cache Bank Controller Architecture
	3.2 Context Switch
	3.3 Cache Bank Architecture
	3.3.1 OS Friendly Microprocessor Architecture Version 1 Cache Bank
	3.3.2 OS Friendly Microprocessor Architecture Version 2 Pipeline State Cache Bank

	3.4 OS Friendly Microprocessor Architecture Performance Modeling
	3.4.1 Conventional and OS Friendly Microprocessor Architecture Context Switch Modeling
	3.4.2 Conventional Architecture Context Switch Modeling
	3.4.3 OS Friendly Microprocessor Architecture Context Switch Modeling (Version 1)
	3.4.4 OS Friendly Microprocessor Architecture Context Switch Modeling (Version 2)

	4. OS Friendly Microprocessor Architecture Hardware Computer Security
	4.1 Cache Bank and Memory Cell Permission Bits
	4.2 Instruction Permission Bits
	4.3 Library Call Permissions

	5. OS Friendly Microprocessor Architecture Access Layers
	5.1 Instruction, Data, Register, and Pipeline State Memory Partitions
	5.2 Permission Bits: Microkernel, Thick OS, Drivers, and Applications
	5.3 I/O Implementation
	5.4 Exception Handling
	5.5 Practical Permission Bit Architecture
	5.6 OS Friendly Microprocessor Architecture Version 2: Practical Cache Bank Architecture
	5.6.1 OS Friendly Microprocessor Architecture Version 1 Permission Bit Limitations
	5.6.2 OS Friendly Microprocessor Architecture Version 2 Permission Bit Cache Bank Architecture

	5.7 Microkernel, OS, and Application Cache Banks Organization
	5.8 Process Level Cache Bank Operations
	5.9 Cache Bank I/O Example

	6. Computer Security Examples
	6.1 Buffer Overflow
	6.2 Data Execution Exploitation
	6.3 “Low-Level Driver” Protection
	6.4 Control Information Protection
	6.5 Debugging Traps
	6.6 Hardware Features for Hypervisor
	6.7 Architecture Issues

	7. Conclusion
	8. References
	List of Symbols, Abbreviations, and Acronyms

